次分数机制下的两资产几何亚式彩虹期权定价模型Pricing Model of Two-asset Geometric Asian Rainbow Options in the Sub-fractional Mechanism
刘顺;王欣怡;郭志东;
摘要(Abstract):
建立了次分数布朗运动下的两资产几何亚式彩虹期权定价模型,运用偏微分方程的方法,得到了两资产几何亚式彩虹期权定价公式,并给出了相关的数值计算。结果表明,在相同参数下,两资产几何亚式彩虹期权在次分数机制下的价格低于其在几何布朗运动机制下的价格。
关键词(KeyWords): 期权定价;次分数布朗运动;两资产几何亚式彩虹期权;数值计算
基金项目(Foundation): 安徽省自然科学青年基金项目(1908085QA29)
作者(Authors): 刘顺;王欣怡;郭志东;
DOI: 10.15916/j.issn1674-3261.2022.05.011
参考文献(References):
- [1] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654.
- [2]陈刚. CEV模型下彩虹期权定价模型的研究[J].现代商业, 2007(30):46-47.
- [3]徐建强,彭锦.不确定环境下彩虹期权定价[J].黄冈师范学院学报, 2010, 30(3):18-22.
- [4]石方圆,杨立保,李翠香.基于带跳的O-U过程的彩虹期权定价[J].合肥工业大学学报:自然科学版, 2017,40(12):1714-1718.
- [5] Peng B, Peng F. Pricing rainbow Asian options[J]. Systems Engineering-Theory&Practice Online, 2009, 29(11):76-83.
- [6] Cheng J H, Lee C Y. A pricing model of fuzzy rainbow options[C]. Kumamoto:Second International Conference on Innovative Computing, Information and Control, 2007:770-773.
- [7] Lee C F, Tzeng G H, Wang S Y. A new application of fuzzy set theory to the Black-Scholes option pricing model[J].Expert Systems with Applications, 2005, 29(2):330-342.
- [8] Stulz R M. Options on the minimum or the maximum of two risky assets:Analysis and applications[J]. Journal of Financial Economics, 1982, 10(2):161-185.
- [9] Johnson H. Options on the maximum or the minimum of several assets[J]. Journal of Financial and Quantitative Analysis, 1987, 22(3):277-283.
- [10] Rubinstein M. Derivative asset analysis[J]. Journal of Economic Perspectives, 1987, 1(2):73-93.
- [11] Bojdecki T, Gorostiza L G, Talarczyk A. Sub-fractional Brownian motion and its relation to occupation times[J].Statistics and Probability Letters, 2004, 69(4):405-419.
- [12] Wang W, Cai G H, Tao X X. Pricing geometric Asian power options in the sub-fractional Brownian motion environment[J]. Chaos, Solitons and Fractals, 2021(145):110754.
- [13] Yan L, Shen G J, He K. It?'s formula for the sub-fractional Brownian motion[J]. Communication on Stochastic Analysis, 2011, 5(1):135-159.
- [14] Bos L P, Ware A F. How to solve multiasset Black-Scholes with time-dependent volatility and correlation[J]. Journal of Computational Finance, 2000, 4(2):99-107.