辽宁工业大学学报(自然科学版)

2022, v.42;No.207(05) 303-310

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于YOLOv5-EA的交通标志识别
Traffic Sign Recognition Based On YOLOv5-EA

孟繁星;于瓅;

摘要(Abstract):

针对目前的交通标志识别模型检测速度慢、精通过的问题,提出了基于YOLOv5-EA的交通标志识别算法。首先选择YOLOv5作为基础模型,根据交通标志尺寸小的特点,引入了有效通道注意力机制(Efficient Channel Attention),不仅避免降维和跨通道交互保持性能,还显著降低了模型的复杂度,提高了特征提取的能力;其次通过增加小尺度检测层,提高模型小目标检测的能力;最后在骨干网络中使用BSConv代替了正则卷积,减少了模型的参数。实验结果表明,在公开的TT100K数据集的基础上进行调整后,对改进前后的模型进行训练对比,改进后YOLOv5-EA模型的mAP为87%,较原始的YOLOv5模型提升了3.7%,训练中的损失降低了34%,能够更快速、准确的检测到交通标志。

关键词(KeyWords): YOLOv5;ECA;交通标志;BSConv;TT100K

Abstract:

Keywords:

基金项目(Foundation): 2021安徽省重点研究与开发计划项目(202104d07020010)

作者(Authors): 孟繁星;于瓅;

DOI: 10.15916/j.issn1674-3261.2022.05.005

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享