氧化石墨烯及其复合材料对重金属离子的吸附研究进展Research Progress in Adsorption of Heavy Metal Ions on Graphene Oxide and its Composites
陈玥琪;张震斌;单凤君;
摘要(Abstract):
氧化石墨烯作为石墨的氧化物,由于其具有良好的亲水性,含有大量的含氧官能团以及较大的比表面积,因此被视为在重金属吸附方面具有良好应用前景的高效吸附剂。但氧化石墨烯含有较多亲水基团导致其难与水分离且在吸附过程中易发生团聚现象,这一缺点极大限制了氧化石墨烯对重金属离子的吸附。因此将氧化石墨烯进行一系列的改性,从而弥补其原有缺陷。本文综述了氧化石墨烯的基本结构及其特点,简述了氧化石墨烯的制备方法以及纯氧化石墨烯对多种重金属离子的吸附特性,着重探讨了氧化石墨烯的各种改性方法及其复合材料对废水中的重金属离子吸附特性的研究进展,提出了目前改性氧化石墨烯复合材料在废水处理中存在的弊端。
关键词(KeyWords): 氧化石墨烯;重金属;吸附研究进展
基金项目(Foundation): 辽宁省教育厅服务地方项目(ZFL202015403)
作者(Authors): 陈玥琪;张震斌;单凤君;
DOI: 10.15916/j.issn1674-3261.2022.05.009
参考文献(References):
- [1] Wang J, Chen C. The current status of heavy metal pollution and treatment technology development in China[J]. Environmental Technology Reviews, 2015, 4(1):39-53.
- [2]周磊,李长龙,刘志. PVDF/APTEX-GO纳米纤维膜的制备及其吸附Pb2+的性能研究[J].中原工学院学报, 2020,31(2):7-13.
- [3]邵文杰. β-环糊精/Fe3O4/氧化石墨烯的构筑及其对重金属离子和染料的吸附[D].兰州:兰州理工大学, 2019.
- [4] Yan Y, Wu W Q, Zhou H H, et al. Adsorption behavior of cross-linked chitosan modified by graphene oxide for Cu(Ⅱ)removal[J]. Journal of central south university,2014, 21(7):2826-2831.
- [5]闫帅欣,王方,王中良.氧化石墨烯对水环境中金属离子的吸附作用研究进展[J].环境化学, 2018, 37(5):1089-1098.
- [6]孙绪兵,吴雪梅,朱建发,等.羧基甲壳素对Pb(Ⅱ)的吸附性能及机理研究[J].中国环境科学, 2018, 38(8):3018-3028.
- [7]王翠翠,葛曷一,马小龙.一种叶酸修饰的磁性氧化石墨烯吸附剂的制备及应用[P]:CN105457601A. 2016.
- [8]陈媛媛,高璇,刘媛媛,等.石墨烯-壳聚糖修饰电极构建石杉碱甲免疫传感器[J].分析测试学报, 2018, 37(9):1014-1019.
- [9] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8):4806.
- [10]栗雯绮,陈文革,崔晓娟,等.氧化石墨烯膜的制备,改性及应用研究进展[J].表面技术, 2021, 50(2):199-210.
- [11]郭丽娟.改性氧化石墨烯材料对Cu2+和Cd2+的吸附性能研究[D].长沙:湖南大学, 2016.
- [12]区韵莹,袁斌,李伟光.氧化石墨烯改性淀粉复合吸附剂的制备及对Cu2+, Pb2+的吸附性能[J].环境污染与防治, 2018, 40(12):1412-1417.
- [13]马建丽,田佳瑜,赵宇光.氧化石墨烯的制备方法及表征检测[J].中国战略新兴产业, 2018(24):126-128.
- [14] Brodie B C. On the Atomic Weight of Graphite[J].Proceedings of The Royal Society of London, 1859(10):11-12.
- [15] Staudenmaier L. Verfahren zur darstellung der graphitsure[J]. Berichte Der Deutschen Chemischen Gesellschaft, 2006, 31(2):1481-1487.
- [16] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958,80(6):1334-1339.
- [17]张建民,王阿宁,李红玑,等.三种改性Hummers法对氧化石墨的结构和亚甲基蓝吸附性能影响[J].粉末冶金技术, 2018, 36(1):16-20.
- [18] Selvanantharajah N, Iyngaran P, Abiman P, et al. Removal of lead by oxidized graphite[J]. C-Journal of Carbon Research, 2021, 7(1):23.
- [19] Mnasri-Ghnimi S, Frini-Srasra N. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays[J]. Applied Clay Science,2019(179):105151.
- [20] Arora R. Adsorption of heavy metals-a review[J].Materials Today, 2019, 18(15):4745-4750.
- [21] Peng W, Li H, Liu Y, et al. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. Journal of Molecular Liquids, 2017(230):496-504.
- [22]陈亚妮.氧化石墨烯对重金属和抗生素的吸附及运移影响研究[D].南京:南京大学, 2016.
- [23] Weng X L, Wu J, Ma L, et al. Impact of synthesis conditions on Pb(II)removal efficiency from aqueous solution by green tea extract reduced graphene oxide.Chemical Engineering Journal, 2019(359):976-981.
- [24] Rafal, Sitko, Edyta, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide.[J].Dalton Transactions, 2013, 42(16):5682-5689.
- [25]龙良俊,刘诗珂,宋雪婷,等.高效去除水溶液中重金属离子的氧化石墨烯基材料的综述[J].应用化工, 2020,49(12):3237-3241.
- [26] Zhang Q, Hou Q, Huang G, et al. Removal of heavy metals in aquatic environment by graphene oxide composites:a review[J]. Environmental Science and Pollution Research,2020, 27(1):1-20.
- [27] Guo H Y, Liu Y H, Zhao J, et al. Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment[J]. Water Research, 2016,102(10):313-320.
- [28] Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990):424-428.
- [29] Rao Z, Feng K, Tang B, et al. Surface decoration of amino-functionalized metal-organic framework/graphene oxide composite onto polydopamine-coated membrane substrate for highly efficient heavy metalremoval[J]. ACS Applied Materials&Interfaces, 2017, 9(3):2594-2605.
- [30] Zeng H, Yu Z, Shao L, Li X. Ag2CO3@Ui O-66-NH2embedding graphene oxide sheets photocatalytic membrane for enhancing the removal performance of Cr(VI)and dyes based on filtration[J]. Desalination,2020(491):114558.
- [31] Lee D, Seo J. Three-dimensionally networked graphene hydroxide with giant pores and its application in supercapacitors[J]. Scientific Reports, 2014(4):7419.
- [32] Bo W, Tr A, Yong C A, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials, 2020(24):22-51.
- [33] Kireeti K, Chandrakanth G, Kadam M M, et al. A sodium modified reduced graphene oxide–Fe3O4 nanocomposite for efficient lead(Ⅱ)adsorption[J]. Children Australia,2016, 6(88):84825-84836.
- [34] Zhang K, Dwivedi V, Chi C, et al. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water[J]. Journal of Hazardous Materials, 2010,182(1-3):162-168.
- [35] Yang Y, Xie Y, Pang L, et al. Preparation of reduced graphene oxide/poly(acrylamide)nanocomposite and its adsorption of Pb(Ⅱ)and methylene blue[J]. Langmuir,2013(29):10727-10736.
- [36] Nizamuddin S, Siddiqui M, Mubarak N M, et al. Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater-science direct[J]. Nanoscale Materials in Water Purification, 2019:447-472.
- [37] Zong P, Wang S, Zhao Y. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(Ⅵ)from aqueous solutions[J]. Chemial Engineering Journal, 2013(220):45-52.
- [38] Ghorbani M, Shams A, Seyedin O, et al. Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples[J]. Environmental Science and Pollution Research, 2018, 25(4):5655-5667.
- [39] Lu W, Dan H, Xiang K K, et al. Anionic polypeptide poly(γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs)hybrid nano-composite for high-efficiency removal of Cd(Ⅱ), Cu(Ⅱ)and Ni(Ⅱ)heavy metal ions[J].Chemical Engineering Journal, 2018(346):38-49.
- [40] Mao H Y, Lu Y H, Lin J D, et al. Manipulating the electronic and chemical properties of graphene via molecular functionalization[J]. Progress in Surface Science, 2013, 88(2):132-159.
- [41] Ge H, Hua T, Chen X. Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+as template[J]. Journal of Hazardous Materials,2016, 308(5):225-232.
- [42] Ge H C, Zou W Y. Preparation and characterization of L-glutamic acid-functionalized graphene oxide for adsorption of Pb(Ⅱ)[J]. Journal of Dispersion Science&Technology, 2017, 38(2):241-247.
- [43]常会,范文娟.氨基功能化磁性Co Fe2O4/氧化石墨烯去除电镀废水中Cr(Ⅵ)的研究[J].人工晶体学报, 2018,47(11):2361-2369.
- [44] Fathi A, Khaled M A, Weam M A, et al. Efficient removal of heavy metals from polluted water with high selectivity for mercury(Ⅱ)by 2-lmino-4-thiobiuret-partially reduced graphene Oxide(IT-PRGO)[J]. ACS Applied Materials&Interfaces, 2017, 9(39):34230-34242.
- [45] Fathima A, Munirasu S, Jerina Z, et al. Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions[J]. Separation and Purification Technology, 2019(209):870-880.
- [46]赵博涵,林海英,冯庆革,等. L-半胱氨酸改性氧化石墨烯去除水中Hg(Ⅱ)[J].应用化工, 2021, 50(4):991-996.
- [47]张文博,李思纯,卫林峰,等.还原氧化石墨烯/胶原纤维多孔材料对Cr(Ⅵ)的吸附性能研究[J].陕西科技大学学报, 2021, 39(4):9-14.
- [48]林晓霞,李慧,付德刚.还原氧化石墨烯/TiO2纳米线复合膜的制备及对Cu2+吸附性的影响[J].人工晶体学报,2021, 50(2):318-324.
- [49]赵超然,单慧媚,彭三曦,等.载铁氧化石墨烯壳聚糖对水中Cr(Ⅵ)的吸附研究[J].水处理技术, 2021, 47(4):45-51.
- [50] Kong D, Wang N, Qiao N, et al. Facile Preparation of Ion-Imprinted Chitosan MicrospheresEnwrapping Fe3O4and Graphene Oxide by InverseSuspension Cross-Linking for Highly Selective Removal of Copper(Ⅱ)[J]. ACS Sustainable Chemistry&Engineering, 2017, 5(8):7401-7409.